Search results

Search for "nucleophilic substitution" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • through a nucleophilic substitution at the phosphorous atom (SN2@P), in which hydroxy groups are the nucleophile as Liu et al. have reported [14], and not at aliphatic or aromatic carbon atoms (SN2@C) [14][39]. Furthermore, Cu2O NPs play an important role in the degradation of MP since hydroxy groups are
  • form of hydroxy groups, evidenced by XPS, promotes a nucleophilic substitution at the phosphorous atom of methyl parathion forming 4-nitrophenol, dimethyl phosphorothioate, and dimethyl hydrogen phosphate as the primary degradation products, identified through 1H and 31P NMR. Likewise, indirect
  • nm and 29 nm Cu2O NPs. The peak at 530.4 eV corresponds to lattice O 1s of Cu2O whereas the peak at 531.8 eV is assigned to surface O 1s (in the form of OH) in Cu2O [50][52]. The presence of hydroxy groups at the surface of Cu2O NPs should enhance the MP degradation due to the nucleophilic
PDF
Album
Full Research Paper
Published 12 Oct 2020

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • nucleophilic substitution reaction takes place, which causes silicon atoms to be etched/removed from the substrate. The metal layer, which is not consumed during the process, simply sinks down while the uncovered parts of the substrate form the tips of the NWs. Indeed, no consummation occurs when gold is used
PDF
Album
Full Research Paper
Published 31 Oct 2019

Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation

  • Zhaoyang Xu,
  • Huan Zhou,
  • Sicong Tan,
  • Xiangdong Jiang,
  • Weibing Wu,
  • Jiangtao Shi and
  • Peng Chen

Beilstein J. Nanotechnol. 2018, 9, 508–519, doi:10.3762/bjnano.9.49

Graphical Abstract
  • several peaks including C=C (≈284.5 eV), C–C (≈286.8 eV), C=O (≈287.8 eV), and O–C=O (≈289.1 eV) [34][35]. Compared with GO, the peak intensities of C=O, C–O and O–C=O peaks of rGO showed an obvious decrease caused by the ring-opening of epoxide groups and nucleophilic substitution on the hydroxy groups
PDF
Album
Full Research Paper
Published 12 Feb 2018

Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

  • Lyubov G. Bulusheva,
  • Yuliya V. Fedoseeva,
  • Emmanuel Flahaut,
  • Jérémy Rio,
  • Christopher P. Ewels,
  • Victor O. Koroteev,
  • Gregory Van Lier,
  • Denis V. Vyalikh and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 1688–1698, doi:10.3762/bjnano.8.169

Graphical Abstract
  • atoms [6]. Furthermore, the energy of a C–F bond decreases with reduction of fluorine content in CNTs [7], which should promote nucleophilic substitution reactions, leading to new derivatives [8][9]. Fluorinated CNTs have a potential in chromatographic separations of various halogenated compounds owing
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2017

Fully scalable one-pot method for the production of phosphonic graphene derivatives

  • Kamila Żelechowska,
  • Marta Prześniak-Welenc,
  • Marcin Łapiński,
  • Izabela Kondratowicz and
  • Tadeusz Miruszewski

Beilstein J. Nanotechnol. 2017, 8, 1094–1103, doi:10.3762/bjnano.8.111

Graphical Abstract
  • led by treatment with SOCl2, followed by subsequent nucleophilic substitution reaction with, i.e., an alcohol or an amine. Alternatively, some coupling agents as N,N'-dicyclohexylcarbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) are used for the synthesis of GO amides or esters
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2017

Surface functionalization of aluminosilicate nanotubes with organic molecules

  • Wei Ma,
  • Weng On Yah,
  • Hideyuki Otsuka and
  • Atsushi Takahara

Beilstein J. Nanotechnol. 2012, 3, 82–100, doi:10.3762/bjnano.3.10

Graphical Abstract
  • ]. Organosilane and organophosphorus coupling molecules show remarkably different reactivities. Silicon derivatives are prone to nucleophilic substitution, and the main reactions involved in the assembly process are hydrolysis and condensation reactions. Heterocondensation between the organosilanols and the
  • water content increases and there is a risk of formation of multilayers due to the uncontrolled polymerization of the multifunctional organosilanes [17][18]. Phosphorus derivatives are much less sensitive to nucleophilic substitution than silicon derivatives are, because phosphorus has a higher
  • oxides [14][36][50]. In addition, they are rather insensitive to nucleophilic substitution and prone to heterocondensation (M–O–P bond formation) as compared to homocondensation (P–O–P). Thus, surface modification with organophosphorous compounds has the advantage of being operable in a wide range of
PDF
Album
Review
Published 02 Feb 2012

Inorganic–organic hybrid materials through post-synthesis modification: Impact of the treatment with azides on the mesopore structure

  • Miriam Keppeler,
  • Jürgen Holzbock,
  • Johanna Akbarzadeh,
  • Herwig Peterlik and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2011, 2, 486–498, doi:10.3762/bjnano.2.52

Graphical Abstract
  • )orthosilicate with chloromethyl-trimethoxysilane or 3-(chloropropyl)-triethoxysilane. Subsequent conversion of the chloro groups into azido groups, by nucleophilic substitution with NaN3 in N,N-dimethylformamide, was conducted upon preservation of the monolithic structure. However, treatment with NaN3 had a
  • solvent (N,N-dimethylformamide, 1,1,3,3-tetramethylurea, 1,3-dimethyl-2-imidazolidinone) or a protic solvent that can form hydrogen bonds, such as water, was used. Keywords: inorganic–organic hybrid materials; mesoporous materials; nucleophilic substitution; silica; sol–gel chemistry; Introduction
  • changes [29]. The present work focuses on the influence of these surface functionalization reactions on the structural properties of preformed silica gels. The first section describes the nucleophilic substitution of hierarchically organized SiO2–(CH2)1,3–Cl gels to give the corresponding SiO2–(CH2)1,3–N3
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2011
Other Beilstein-Institut Open Science Activities